Preclinical Discovery of ARX622, a Site-Specific TLR7-Agonist Antibody-Drug Conjugate

David Mills, PhD
Senior Director, Preclinical Science
November 14-16; PEGS Europe 2023
Forward-Looking Statements

Certain statements contained in this presentation, other than statements of historical fact, are "forward-looking" statements, within the meaning of the Private Securities Litigation Reform Act of 1995. Forward-looking statements can be identified by the use of words such as “believes,” “expects,” “hopes,” “may,” “will,” “plan,” “intends,” “estimates,” “could,” “should,” “would,” “continue,” “seeks,” “pro forma,” or “anticipates,” or other similar words (including their use in the negative), or by discussions of future matters. These forward-looking statements include, without limitation, statements regarding the timing, progress and results of preclinical studies and clinical trials for our product candidates; our product development plans and strategies; plans and expectations with respect to regulatory filings and approvals; the potential benefits and market opportunity for our product candidates and technologies; expectations regarding future events under collaboration and licensing agreements, as well as our plans and strategies for entering into further collaboration and licensing agreements; and expectations regarding our future financial position and results of operations.

Forward-looking statements are subject to risks and uncertainties that could cause actual results to differ materially, and historical results should not be considered as an indication of future performance. These risks and uncertainties include, among others, risks inherent in the development and regulatory approval process for novel therapeutics; the fact that future preclinical and clinical results may not be consistent with prior results; potential delays in development timelines, including delays in clinical trials; the potential impact of the COVID-19 pandemic; our reliance on third parties for development and manufacturing activities; changes in competitive products or in the standard of care; the risk of early termination of collaboration agreements; the risk that our proprietary rights may be insufficient to protect our product candidates or that we could infringe the proprietary rights of others; the fact that we will need additional capital and such capital may not be available on acceptable terms or at all; and changes in laws and regulations. Other factors that may cause our actual results to differ from current expectations are discussed in our filings with the U S Securities and Exchange Commission, including the section titled “Risk Factors” contained therein.

These forward-looking statements are based on information available to, and expectations of, Ambrx as of the date of this presentation. Ambrx disclaims any obligation to update these forward-looking statements, except as may be required by law.
Immune-Stimulatory ADCs (ISACs) Provide Targeted “Danger” Signals and Complement Multiple Established Treatment Modalities

The “Danger Hypothesis:” non-self + danger = immunity

“I would suggest that the criteria have to do with what is dangerous rather than what is ‘self’.”

Polly Matzinger

ISACs: Multiple Mechanistic Advantages

- Tumor-specific activity with systemic administration
- Broad “danger” signal induction (TNF/IL-6, IFNs, chemokines)
- APC maturation + polyclonal Ag presentation
- Complementary MOA to: ADCs, checkpoint blockade, others

New ISAC field can learn from decades of ADC experience
DAR Heterogeneity and Instability Can Limit the Potential of Traditional ADCs With Stochastic Conjugation

Heterogeneous DAR Mixture:
- Low DAR
- High DAR

Labile Linker/Conjugations:
- Toxicity Potential and Reduced Payload Delivery to TME

Ambrx ADC and ISAC Focus:
1. Homogenous DAR
2. Stable conjugation chemistry
3. Non-cleavable linker
4. Low payload cell-permeability
Ambrx ISAC Platform: Highly Stable and Homogenous via Site-Specific Conjugation and Optimized Linker Chemistry

Multi-Factor Optimization to Design Selective, Potent, and Stable ISACs

- **Antibody**: tumor-associated antigen (TAA) selection, epitope, Fc function
- **Payload**: target, potency, bioconjugation potential, cell permeability
 - **Ambrx**: novel TLR7 agonist (TLR7a) payloads have a range of potencies
 - Free drug-linker has low cell permeability
- **ISAC**: linker stability, DAR, and conjugation site
 - Site-specific conjugation enables high DAR homogeneity
 - Optimized conjugate site and stable linker chemistry
 - Drug-Linker hydrophilicity optimized for enhanced PK
ReCODE and EuCODE Platforms: An Expanded Genetic Code Incorporating Synthetic Amino Acids (SAAs)

- Orthogonal tRNA synthetase
- Unique Amber Codon in mRNA
- SAA incorporation site on protein

para-Acetyl-phenylalanine

1. Ambrx’s SAA: e.g., pAF
2. Orthogonal tRNA synthetase
3. Orthogonal tRNA
4. Unique Amber Codon in mRNA
5. SAA incorporation site on protein
Ambrx Site-Specific Conjugation Technology Facilitates Highly Homogenous ISAC Generation

- **Oxime conjugation chemistry**: homogenous, clinically validated stability (ARX788 and ARX517)
- Conjugation site optimized for pharmacologic and biophysical properties
- Focus on **non-cleavable linkers**

![Diagram](image)
Site-Specific ISAC Conjugates Display Increased Parental mAb-Like Thermal Stability vs. Cysteine Conjugates

Ambrx site-specific ISAC has a parental mAb-like CH2 transition temperature, unlike DAR-matched random Cys-conjugate ISAC
Same mAb, Same TLR7 Payload: Site-specific Conjugation Promotes Extended PK and Reduces Target-Independent Activity Compared to Cysteine Conjugate

Pharmacokinetics in Balb/c mice

Tumor cell + macrophage reporter co-culture

Site-specific conjugation facilitates extended PK and reduced off-target activity vs. Cys-conjugation
TLR7 Prioritized as Payload Target Due to Selective Expression and Type I IFN Induction

Guiducci et al, J Exp Med 2013

BioGPS.org, Primary Cell Atlas
Different Conjugation Sites and Payloads Yield a Panel of ISACs With Differential Biologic Activity

Same payload, different conjugation sites

Same conjugation site, different TLR7a payloads

Tumor Cells + TLR7 Reporter Cells → NF-κB Activation
ARX622- A HER2-Targeted, TLR7-Selective ISAC that Induces Conditional Immune Cell Activation

Ambrx Drug-Linker is a Novel TLR7-Selective Agonist

ARX622 Promotes Conditional Immune Activation in the Presence of HER2+ Tumor Cells

Positive Control
(TLR7=DSR-6434 / TLR8=R848)

Ambrx ISAC Drug-Linker
ARX622 Activates Multiple Anti-Tumor Immune Mechanisms: Robust Type I and Type III IFN Production

- **IFN-α2a**
- **IFN-β**
- **IFN-λ1 (IL-29)**

Cytokine Production Activation/Differentiation

Tumor Cells + PBMCs → Cytokine Production Activation/Differentiation
ARX622 Promotes Dose-Dependent Tumor Growth Inhibition in a Syngeneic Immunocompetent Model

- ARX622 showed dose-dependent tumor growth inhibition in immunocompetent mice
- No body weight loss or hypersensitivity upon repeated doses
ARX622 Promotes Tumor-Specific Proinflammatory Cytokine and Type I IFN Production

MC38-hHER2, Balb/c

+ test article

24h

Tumor cytokines
Serum cytokines

Tumor cytokines
Serum cytokines

TNF-α

IL-12p70

IFN-β

Concentration (pg/mL)

Concentration (pg/mL)

Concentration (pg/mL)

Vehicle
ARX622
HER2 mAb
Isotype ISAC

Vehicle
ARX622
HER2 mAb
Isotype ISAC

Vehicle
ARX622
HER2 mAb
Isotype ISAC
ARX622 Induces Long Term Protection Against HER2-Negative Tumor Variant Re-Challenge

ARX622-treated recipients are protected from HER2-positive and HER2-negative tumor growth
ARX622 Induces Complete Tumor Regression in the HER2-High SKOV3 CDX Model at Single Doses ≥ 0.3 mg/kg

- ISAC exhibited ~10x increased potency vs. MTI-based ADC
- Multiple ISAC mechanisms likely contribute to efficacy: cytostatic cytokines, ADCP, pDC cytotoxicity
Raising the Bar: Ambrx HER2 ISAC Promotes Regression of Large, Established SKOV3-scid Xenograft Tumors

Dose at: **200mm³**

ARX622 displays anti-tumor activity in therapeutic setting
Ambrx ISAC Reduces SKOV3 Tumor Growth in HER2 mAb and HER2-ADC Non-Responder Mice

ARX622 displays anti-tumor activity in HER2-targeted therapy non-responder mice
ARX622 + HER2-ADC Combination Induces Enhanced Tumor Growth Inhibition in the HER2-Low JIMT-1 CDX Model

JIMT-1 (HER2-Low)

CDX Summary: Pre-clinical support for monotherapy, combo with HER2-ADCs, and usage post-HER2-ADCs
ARX622 is Well-Tolerated in NHPs and Displays ~60x Pre-Clinical Therapeutic Index

NHP Study Summary: (repeat i.v. dosing)

- No mortality or moribundity
- No clinical signs
- No adverse histopathologic findings
- No adverse clinical chemistry or hematologic findings
- Pharmacodynamic Biomarkers: transient cytokine elevation

![Graph showing ARX622 Total Ab Plasma Concentration (ng/mL) over time]
Ambrx ISAC Platform is Engineered for Stability and Broad Danger Signal Induction, Facilitating an Encouraging Therapeutic Index and Robust Efficacy Profile

Pre-Clinical ARX622 Data Highlights

- Induction of broad danger signals: proinflammatory cytokines, Type I/III IFN, (APC maturation, ADCC enhancement not shown today)
- Repeat doses were well-tolerated in NHP
- Robust tumor growth inhibition in syngeneic tumor model with evidence of polyclonal immunologic memory
- Complete regression of large tumors with single-dose (including post-HER2-ADC treatment)
- Monotherapy efficacy in HER2-low setting
- Support for combination with HER2-ADCs